Systems and Machine Learning

Jeff Dean
Google Brain team
g.co/brain

Presenting the work of many people at Google
Systems for Machine Learning
General Purpose Processor Performance Trends

42 Years of Microprocessor Trend Data

Transistors (thousands)

Single-Thread Performance (SpecINT x 10^3)

Frequency (MHz)

Typical Power (Watts)

Number of Logical Cores

Single-core performance plateauing after decades of exponential growth

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Graph from 42 Years of Microprocessor Trend Data, Karl Rupp, CC-BY 4.0.
Just when deep learning is creating insatiable computation demands

Training powerful models that are computationally-expensive on:

- Terabyte or petabyte-sized training datasets

 Plus techniques like AutoML (“Learning to learn”, Neural Architecture Search, etc.) can multiply desired training computation by 5-1000X

Inference using expensive deep models in systems with:

- hundreds of thousands of requests per second
- latency requirements of tens of milliseconds
- billions of users

- Make solar energy affordable
- Provide energy from fusion
- Develop carbon sequestration methods
- Manage the nitrogen cycle
- Provide access to clean water
- Restore & improve urban infrastructure
- Advance health informatics
- Engineer better medicines
- Reverse-engineer the brain
- Prevent nuclear terror
- Secure cyberspace
- Enhance virtual reality
- Advance personalized learning
- Engineer the tools for scientific discovery

www.engineeringchallenges.org/challenges.aspx
Restore & improve urban infrastructure
3 million miles self-driven

We drive more than 25,000 autonomous miles each week, largely on complex city streets. That’s on top of 1 billion simulated miles we drove just in 2016.

https://waymo.com/tech/
Advance health informatics
Healthy

Diseased

Hemorrhages

No DR	Mild DR	Moderate DR	Severe DR	Proliferative DR
1 | 2 | 3 | 4 | 5
The study by Gulshan and colleagues truly represents the brave new world in medicine."

Dr. Andrew Beam, Dr. Isaac Kohane
Harvard Medical School

"Google just published this paper in JAMA (impact factor 37) [...] It actually lives up to the hype."

Dr. Luke Oakden-Rayner
University of Adelaide
Can we predict cardiovascular risk? If so, this is a very nice non-invasive way of doing so

Can we also predict treatment response?

Predictive tasks for healthcare

Given a patient’s electronic medical record data, can we predict the future?

Deep learning methods for sequential prediction are becoming extremely good, e.g. recent improvements in Google Translation.
Neural Machine Translation

Closes gap between old system and human-quality translation by 58% to 87%

Enables better communication across the world

research.googleblog.com/2016/09/a-neural-network-for-machine.html
Predictive tasks for healthcare

Given a large corpus of training data of de-identified medical records, can we predict interesting aspects of the future for a patient not in the training set?

- will patient be readmitted to hospital in next N days?
- what is the likely length of hospital stay for patient checking in?
- what are the most likely diagnoses for the patient right now? and why?
- what medications should a doctor consider prescribing?
- what tests should be considered for this patient?
- which patients are at highest risk for X in next month?

Collaborating with several healthcare organizations, including UCSF, Stanford, and Univ. of Chicago.
Scalable and accurate deep learning for electronic health records

Alvin Rajkomar1,2, Eyal Oren1, Kai Chen1, Andrew M. Dai1, Nissan Hajaj1, Peter J. Liu1, Xiaobing Liu1, Mimi Sun1, Patrik Sundberg1, Hector Yee1, Kun Zhang1, Yi Zhang1, Gavin E. Duggan1, Gerardo Flores1, Michaela Hardt1, Jamie Irvine1, Quoc Le1, Kurt Litsch1, Jake Marcus1, Alexander Mossin1, Justin Tansuwan1, De Wang1, James Wexler1, Jimbo Wilson1, Dana Ludwig2, Samuel L. Volchenboum4, Katherine Chou1, Michael Pearson1, Srinivasan Madabushi1, Nigam H. Shah3, Atul J. Butte2, Michael Howell1, Claire Cui1, Greg Corrado1, and Jeff Dean1

1Google Inc, Mountain View, California
2University of California, San Francisco, San Francisco, California
3Stanford University, Stanford, California
4University of Chicago Medicine, Chicago, Illinois

January 2018

https://arxiv.org/abs/1801.07860
Engineer better medicines and maybe...
Make solar energy affordable
Develop carbon sequestration methods
Manage the nitrogen cycle
Predicting Properties of Molecules

DFT (density functional theory) simulator

Toxic?
Bind with a given protein?
Quantum properties: E, ω_0, ...

$\sim 10^3$ seconds
Predicting Properties of Molecules

DFT (density functional theory) simulator

Toxic?
Bind with a given protein?
Quantum properties: E, ω_0, \ldots

$\sim 10^3$ seconds

Message Passing Neural Net

$\sim 10^{-2}$ seconds
Predicting Properties of Molecules

- State of the art results predicting output of expensive quantum chemistry calculations, but \(~300,000\) times faster

Reverse engineer the brain
Connectomics: Reconstructing Neural Circuits from High-Resolution Brain Imaging
Automated Reconstruction Progress at Google

Metric: Expected Run Length (ERL)
“mean microns between failure” of automated neuron tracing
New Technology: Flood Filling Networks

Flood-Filling Networks

- Start with a seed point
- Recurrent neural network iteratively fills out an object based on image content and its own previous predictions

Google

Michał Januszewski
Google
mjanusz@google.com

Jeremy Maitin-Shepard
Google
jibms@google.com

Peter Li
Google
phli@google.com

Jörgen Kornfeld
Max Planck Institute for Neurobiology
kornfeld@neuro.mpg.de

Winfried Denk
Max Planck Institute for Neurobiology
winfried.denk@neuro.mpg.de

Viren Jain
Google
viren@google.com

https://arxiv.org/abs/1611.00421
Flood Filling Networks: 3d Inference
Flood Filling Networks: 3d Inference

~ 100 µm (10,000 voxels)
Songbird Brain Wiring Diagram

- Raw data produced by Max Planck Institute for Neurobiology using serial block face scanning electron microscopy
- $10,600 \times 10,800 \times 5,700$ voxels = ~600 billion voxels
- Goal: Reconstruct **complete connectivity** and use to test specific hypotheses related to how biological nervous systems produce precise, sequential motor behaviors and perform reinforcement learning.

Courtesy Jorgen Kornfeld & Winfried Denk, MPI
Engineer the Tools of Scientific Discovery
Open, standard software for general machine learning

Great for Deep Learning in particular

First released Nov 2015

Apache 2.0 license

http://tensorflow.org/

and

https://github.com/tensorflow/tensorflow
Machine Learning for Finding Planets
Blog: www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
Paper: [Shallue & Vandenburg], www.cfa.harvard.edu/~avanderb/kepler90i.pdf
IDENTIFYING EXOPLANETS WITH DEEP LEARNING: A FIVE PLANET RESONANT CHAIN AROUND KEPLER-80 AND AN EIGHTH PLANET AROUND KEPLER-90

Christopher J. Shallue† 1 & Andrew Vanderburg*, 2,3

Blog: www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
Paper: [Shallue & Vandenb]{rug}, www.cfa.harvard.edu/~avanderb/kepler90i.pdf
IDENTIFYING EXOPLANETS WITH DEEP LEARNING: A FIVE PLANET RESONANT CHAIN AROUND KEPLER-80 AND AN EIGHTH PLANET AROUND KEPLER-90

Christopher J. Shallue† 1 & Andrew Vanderburg*, 2,3

Blog: www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
Paper: [Shallue & Vandenburg], www.cfa.harvard.edu/~avanderb/kepler90i.pdf
AutoML: Automated machine learning ("learning to learn")
Current:

Solution = ML expertise + data + computation
Current:

Solution = ML expertise + data + computation

Can we turn this into:

Solution = data + 100X computation

???
Neural Architecture Search

Idea: model-generating model trained via reinforcement learning

1. Generate ten models
2. Train them for a few hours
3. Use loss of the generated models as reinforcement learning signal

Neural Architecture Search with Reinforcement Learning, Zoph & Le, ICLR 2016
arxiv.org/abs/1611.01578
Neural Architecture Search to find a model

Controller: proposes ML models

Train & evaluate models

20K times

Iterate to find the most accurate model
Figure 7: Convolutional architecture discovered by our method, when the search space does not have strides or pooling layers. PH is filter height, PW is filter width and N is number of filters.
AutoML outperforms handcrafted models

AutoML outperforms handcrafted models

Years of effort by top ML researchers in the world

AutoML outperforms handcrafted models

AutoML outperforms handcrafted models

AutoML outperforms handcrafted models

CLOUD AUTOML ALPHA

Train high quality custom machine learning models with minimum effort and machine learning expertise

REQUEST ACCESS

Train Custom Machine Learning Models

Cloud AutoML is a suite of Machine Learning products that enables developers with limited machine learning expertise to train high quality models by leveraging Google's state of the art transfer learning, and Neural Architecture Search technology.

AutoML Vision is the first product to be released. It is a simple, secure and flexible ML service that lets you train custom vision models for your own use cases. Soon, Cloud AutoML will release other services for all other major fields of AI.

https://cloud.google.com/automl/
More computational power needed

Deep learning is transforming how we design computers
Special computation properties

Reduced precision ok

\[
\begin{array}{c}
\text{about 1.2} \\
\times \text{about 0.6} \\
\hline
\text{about 0.7}
\end{array}
\]

\[
1.21042 \\
\times 0.61127 \\
\hline
0.73989343
\]

\textbf{NOT}
Special computation properties

handful of specific operations

about 1.2
× about 0.6
about 0.7

NOT

1.21042
× 0.61127
0.73989343

reduced precision ok
Tensor Processing Unit v2

Google-designed device for neural net training and inference
Tensor Processing Unit v2

Google-designed device for neural net training and inference
TPUv2 Chip

- 16 GB of HBM
- 600 GB/s mem BW
- Scalar/vector units: 32b float
- MXU: 32b float accumulation but reduced precision for multipliers
- 45 TFLOPS
Tensor Processing Unit v2

- 180 teraflops of computation, 64 GB of HBM memory, 2400 GB/s mem BW
- Designed to be connected together into larger configurations
TPU Pod
64 2nd-gen TPUs
11.5 petaflops
4 terabytes of HBM memory
Programmed via TensorFlow

Same program will run w/only minor modifications on CPUs, GPUs, & TPUs

Same program scales via synchronous data parallelism without modification on TPU pods
Accelerated Linear Algebra (XLA)

- JIT / AOT compiler for linear algebra
- Targets multiple backends, e.g. CPUs, GPUs, and TPUs
- Compiler, runtime, and accelerator-specific optimizer
- Compiler plus CPU and GPU backends open-sourced as part of TensorFlow

The life of a neural network:

github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler
Accelerated Linear Algebra (XLA)

- JIT / AOT compiler for linear algebra
- Targets multiple backends, e.g. CPUs, GPUs, and TPUs
- Compiler, runtime, and accelerator-specific optimizer
- Compiler plus CPU and GPU backends open-sourced as part of TensorFlow

The life of a neural network:

TF Estimator code → TF Graph → XLA: Target-independent optimizations → XLA: Target-specific code generation

github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler
Cloud TPU machine learning accelerators now available in beta

Monday, February 12, 2018

Cloud TPU - host w/180 TFLOPS TPUv2 device attached
Cloud TPU - host w/180 TFLOPS TPUv2 device attached

“Since working with Google Cloud TPUs, we’ve been extremely impressed with their speed—what could normally take days can now take hours.”
— Anantha Kancherla, Head of Software, Self-Driving Level 5, Lyft

“We found that moving TensorFlow workloads to TPUs has boosted our productivity by greatly reducing both the complexity of programming new models and the time required to train them.”
— Alfred Spector, Chief Technology Officer, Two Sigma
TPUs run a wide & growing variety of open-source reference models

- **Image Classification**
- **Object Detection**
 - RetinaNet
- **Machine translation, language modeling, sentiment analysis**
 - Transformer

Coming soon:

- **AmoebaNet that achieves 80% top-1 ImageNet validation accuracy**
 - Architecture discovered through evolutionary search on TPU (arxiv.org/abs/1802.01548)
- **Transformer-Based Speech Recognition**
 - Preview in [Tensor2Tensor](https://github.com/tensorflow/tensor2tensor) today
- **DeepVariant**
 - High-accuracy variant calling for genomic sequencing
- **Transformer-Based Image Generation**

https://github.com/tensorflow/tpu/
Some TPU Success Stories

Internal search ranking model training:
 14.2X: ~9 hours on 1/4 pod vs. ~132 hours on 275 high end CPU machines

Internal image model training:
 9.8X: ~22 hours on 1/4 pod vs. ~216 hours on previous production setup

WaveNet production model inference:
 Generates speech at 20X real time
Some TPU Success Stories (December 2017)

Resnet-50 to >76% accuracy:
 1402 minutes on single TPUv2 device
 45 minutes on 1/2 pod (32 TPUv2 devices)

Resnet-50 to 75% accuracy:
 22 minutes on full pod (64 TPUv2 devices)

> same code, no special tricks
Some TPU Success Stories (today)

Resnet-50 to >76% accuracy:
- **1402 785 minutes** on single TPUv2 device
- **45 24.5 minutes** on 1/2 pod (32 TPUv2 devices)

Resnet-50 to 75% accuracy:
- **22 12.2 minutes** on full pod (64 TPUv2 devices)

same code, no special tricks
Some TPU Success Stories (today)

Resnet-50 to >76% accuracy:
- 1402 785 minutes on single TPUv2 device
- 45 24.5 minutes on 1/2 pod (32 TPUv2 devices)

Resnet-50 to 75% accuracy:
- 22 12.2 minutes on full pod (64 TPUv2 devices)

ImageNet training epoch (1.2M images) every ~8 seconds

same code, no special tricks
TPU Scaling for ResNet-50 (December 2017)

Speed-up curve measured by images per second

- Observed
- Perfect

Images per second vs. # TPU devices
TPU Scaling for ResNet-50 (today)
More than just ImageNet

Transformer model from "Attention is All You Need" (2017 A. Vaswani et. al., NIPS 2017)

WMT’14 English-German translation task

Adam optimizer - same learning rate schedule across configurations
1000 **Cloud TPUs** available **for free** to top researchers who are committed to open machine learning research

We’re excited to see what researchers will do with much more computation! TFRC signup: g.co/tpusignup
What should we build in future ML accelerators?
ML Arxiv Papers per Year

- ML Arxiv Papers
- Moore’s Law
If you start an ASIC machine learning accelerator design today, ...

Starts to get deployed into production in ~2 years

Must remain relevant through ~5 years from now

Can We See The Future Clearly Enough?
What should we bet on?
Some Example Questions

Precision:
Will very-low precision training (1-4 bit weights, 1-4 bit activations) work in general across all problems we care about?

Sparsity and embeddings: How should we handle:
- Dynamic routing like the sparsely-gated Mixture of Experts work (ICLR'17)
- Very large embeddings for some problems (e.g. 1B items x 1000D)

Batch size:
Should we build machines for very large batch sizes? Or batch size 1?

Training algorithms:
Will SGD-like algorithms remain the dominant training paradigm? Or will large-batch second-order methods like K-FAC be better?
Machine Learning for Systems
Learning Should Be Used Throughout our Computing Systems

Traditional low-level systems code (operating systems, compilers, storage systems) **does not** make extensive use of machine learning today.

This should change!

A few examples and some opportunities...
Machine Learning for Higher Performance Machine Learning Models
For large models, model parallelism is important
For large models, model parallelism is important. But getting good performance given multiple computing devices is non-trivial and non-obvious.
Softmax

Attention

LSTM 2

LSTM 1

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D
Reinforcement Learning for Higher Performance Machine Learning Models

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972
Reinforcement Learning for Higher Performance Machine Learning Models

Placement model (trained via RL) gets graph as input + set of devices, outputs device placement for each graph node.

Device Placement Optimization with Reinforcement Learning, Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972
Reinforcement Learning for Higher Performance Machine Learning Models

Placement model (trained via RL) gets graph as input + set of devices, outputs device placement for each graph node.

Measured time per step gives RL reward signal.

Device Placement Optimization with Reinforcement Learning, Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972
Device Placement with Reinforcement Learning

Placement model (trained via RL) gets graph as input + set of devices, outputs device placement for each graph node

Measured time per step gives RL reward signal

+19.3% faster vs. expert human for neural translation model

+19.7% faster vs. expert human for InceptionV3 image model

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972
A Hierarchical Model for Device Placement,
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean, to appear in ICLR 2018,
openreview.net/forum?id=Hkc-TeZ0W
A Hierarchical Model for Device Placement

+53.7% faster vs. expert human for neural machine translation model

A Hierarchical Model for Device Placement,
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean, to appear in ICLR 2018,
openreview.net/forum?id=Hkc-TeZ0W
Learned Index Structures
not
Conventional Index Structures
B-Trees are Models

(a) B-Tree Index

Key

BTree

pos

pos - 0 pos + page size

...

(b) Learned Index

Key

Model (e.g., NN)

Model

pos

pos - min_err pos + max_err

...

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208
Indices as CDFs
Does it Work?

Index of 200M web service log records

<table>
<thead>
<tr>
<th>Type</th>
<th>Config</th>
<th>Lookup time</th>
<th>Speedup vs. Btree</th>
<th>Size (MB)</th>
<th>Size vs. Btree</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTree</td>
<td>page size: 128</td>
<td>260 ns</td>
<td>1.0X</td>
<td>12.98 MB</td>
<td>1.0X</td>
</tr>
<tr>
<td>Learned index</td>
<td>2nd stage size: 10000</td>
<td>222 ns</td>
<td>1.17X</td>
<td>0.15 MB</td>
<td>0.01X</td>
</tr>
<tr>
<td>Learned index</td>
<td>2nd stage size: 50000</td>
<td>162 ns</td>
<td>1.60X</td>
<td>0.76 MB</td>
<td>0.05X</td>
</tr>
<tr>
<td>Learned index</td>
<td>2nd stage size: 100000</td>
<td>144 ns</td>
<td>1.67X</td>
<td>1.53 MB</td>
<td>0.12X</td>
</tr>
<tr>
<td>Learned index</td>
<td>2nd stage size: 200000</td>
<td>126 ns</td>
<td>2.06X</td>
<td>3.05 MB</td>
<td>0.23X</td>
</tr>
</tbody>
</table>

60% faster at 1/20th the space, or 17% faster at 1/100th the space

Hash Tables

(a) Traditional Hash-Map

(b) Learned Hash-Map

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Slots</th>
<th>Hash Type</th>
<th>Search Time (ns)</th>
<th>Empty Slots</th>
<th>Space Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map 75%</td>
<td>75%</td>
<td>Model Hash</td>
<td>67</td>
<td>0.63GB (05%)</td>
<td>-20%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random Hash</td>
<td>52</td>
<td>0.80GB (25%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>Model Hash</td>
<td>53</td>
<td>1.10GB (08%)</td>
<td>-27%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random Hash</td>
<td>48</td>
<td>1.50GB (35%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125%</td>
<td>Model Hash</td>
<td>64</td>
<td>2.16GB (26%)</td>
<td>-6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random Hash</td>
<td>49</td>
<td>2.31GB (43%)</td>
<td></td>
</tr>
<tr>
<td>Web Log 75%</td>
<td>75%</td>
<td>Model Hash</td>
<td>78</td>
<td>0.18GB (19%)</td>
<td>-78%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random Hash</td>
<td>53</td>
<td>0.84GB (25%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>Model Hash</td>
<td>63</td>
<td>0.35GB (25%)</td>
<td>-78%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random Hash</td>
<td>50</td>
<td>1.58GB (35%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125%</td>
<td>Model Hash</td>
<td>77</td>
<td>1.47GB (40%)</td>
<td>-39%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random Hash</td>
<td>50</td>
<td>2.43GB (43%)</td>
<td></td>
</tr>
<tr>
<td>Log Normal 75%</td>
<td>75%</td>
<td>Model Hash</td>
<td>79</td>
<td>0.63GB (20%)</td>
<td>-22%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random Hash</td>
<td>52</td>
<td>0.80GB (25%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>Model Hash</td>
<td>66</td>
<td>1.10GB (26%)</td>
<td>-30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random Hash</td>
<td>46</td>
<td>1.50GB (35%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125%</td>
<td>Model Hash</td>
<td>77</td>
<td>2.16GB (41%)</td>
<td>-9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random Hash</td>
<td>46</td>
<td>2.31GB (44%)</td>
<td></td>
</tr>
</tbody>
</table>

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208
Bloom Filters

Model is simple RNN
W is number of units in RNN layer
E is width of character embedding

~36% space improvement over Bloom Filter at same false positive rate

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208
Where Else Could We Use Learning?
Computer Systems are Filled With Heuristics

Compilers, Networking code, Operating Systems, ...

Heuristics have to work well “in general case”

Generally don’t adapt to actual pattern of usage

Generally don’t take into account available context
Anywhere We’re Using Heuristics To Make a Decision!

Compilers: instruction scheduling, register allocation, loop nest parallelization strategies, ...

Networking: TCP window size decisions, backoff for retransmits, data compression, ...

Operating systems: process scheduling, buffer cache insertion/replacement, file system prefetching, ...

Job scheduling systems: which tasks/VMs to co-locate on same machine, which tasks to pre-empt, ...

ASIC design: physical circuit layout, test case selection, ...
Anywhere We’ve Punted to a User-Tunable Performance Option!

Many programs have huge numbers of tunable command-line flags, usually not changed from their defaults

```--eventmanager_threads=16
--bigtable_scheduler_batch_size=8
--mapreduce_merge_memory=134217728
--lexicon_cache_size=1048576
--storage_server_rpc_freelist_size=128
...```
Meta-learn everything

ML:

- learning placement decisions
- learning fast kernel implementations
- learning optimization update rules
- learning input preprocessing pipeline steps
- learning activation functions
- learning model architectures for specific device types, or that are fast for inference on mobile device X, learning which pre-trained components to reuse, ...

Computer architecture/datacenter networking design:

- learning best design properties by exploring design space automatically (via simulator)
Keys for Success in These Settings

(1) Having a numeric metric to measure and optimize
(2) Having a clean interface to easily integrate learning into all of these kinds of systems

Current work: exploring APIs and implementations

Basic ideas:
Make a sequence of choices in some context
Eventually get feedback about those choices
Make this all work with very low overhead, even in distributed settings
Support many implementations of core interfaces
Conclusions

ML hardware is at its infancy. Even faster systems and wider deployment will lead to many more breakthroughs across a wide range of domains.

Learning in the core of all of our computer systems will make them better/more adaptive. There are many opportunities for this.

More info about our work at g.co/brain